When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  4. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.

  5. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  6. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  7. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]

  8. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    It can also be understood to be the infinitesimal form of the relative entropy (i.e., the Kullback–Leibler divergence); specifically, it is the Hessian of the divergence. Alternately, it can be understood as the metric induced by the flat space Euclidean metric, after appropriate changes of variable.

  9. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is