When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point. The de Longchamps point is the point of concurrence of several lines with the Euler line.

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  6. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    The line k is a variable line through K. The line l through L is perpendicular to k. The angle between k and m is the parameter. k and l are associated lines depending on the common parameter. The variable intersection point S of k and l describes a circle. This circle is the locus of the intersection point of the two associated lines.

  7. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    In particular it is important to assure that for two given line segments, a new line segment can be constructed, such that its length equals the product of lengths of the other two. Similarly one needs to be able to construct, for a line segment of length , a new line segment of length . The intercept theorem can be used to show that for both ...

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The equation of a line in a Euclidean plane is linear, that is, it equates a polynomial of degree one to zero. So, the Bézout bound for two lines is 1, meaning that two lines either intersect at a single point, or do not intersect. In the latter case, the lines are parallel and meet at a point at infinity. One can verify this with equations.

  9. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of ...