Ad
related to: how to calculate strength of a material list
Search results
Results From The WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength.
A statistical analysis of the strength of many samples of a material is performed to calculate the particular material strength of that material. The analysis allows for a rational method of defining the material strength and results in a value less than, for example, 99.99% of the values from samples tested.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [ 16 ] For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.
where represents the applied true stress on the material, is the true strain, and is the strength coefficient. The value of the strain hardening exponent lies between 0 and 1, with a value of 0 implying a perfectly plastic solid and a value of 1 representing a perfectly elastic solid.
A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than that of steel, but bulk glass usually does not.