Search results
Results From The WOW.Com Content Network
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
The Complete Greedy Algorithm (CGA) considers all partitions by constructing a k-ary tree. Each level in the tree corresponds to an input number, where the root corresponds to the largest number, the level below to the next-largest number, etc. Each of the k branches corresponds to a different set in which the current number can be put.
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
A basic problem regarding weighted matroids is to find an independent set with a maximum total weight. This problem can be solved using the following simple greedy algorithm: Initialize the set A to an empty set. Note that, by definition of a matroid, A is an independent set. For each element x in E\A, check whether Au{x} is still an ...
In the balanced assignment problem, both parts of the bipartite graph have the same number of vertices, denoted by n. One of the first polynomial-time algorithms for balanced assignment was the Hungarian algorithm. It is a global algorithm – it is based on improving a matching along augmenting paths (alternating paths between unmatched vertices).
This greedy algorithm actually achieves an approximation ratio of (′) where ′ is the maximum cardinality set of . For δ − {\displaystyle \delta -} dense instances, however, there exists a c ln m {\displaystyle c\ln {m}} -approximation algorithm for every c > 0 {\displaystyle c>0} .