Search results
Results From The WOW.Com Content Network
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that achieves high Hamming distance.
The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... By design, the generator polynomial has consecutive roots ...
Download QR code; Print/export Download as PDF; Printable version; In other projects ... In different branches of mathematics, primitive polynomial may refer to:
GF(2) (also denoted , Z/2Z or /) is the finite field with two elements. [1] [a]GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.
Peters polynomials; Pidduck polynomials; Pincherle polynomials; Polylogarithmic function; Polynomial decomposition; Polynomial Diophantine equation; Polynomial evaluation; Polynomial expansion; Polynomial greatest common divisor; Polynomial identity testing; Polynomial interpolation; Polynomial long division; Polynomial matrix; Polynomial ...
By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...