Search results
Results From The WOW.Com Content Network
A ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent to sensitivity and FPR is equal to 1 − specificity, the ROC graph is sometimes called
ROC curves plot the sensitivity of a biomarker on the y axis, against the false discovery rate (1- specificity) on the x axis. An image of different ROC curves is shown in Figure 1. ROC curves provide a simple visual method for one to determine the boundary limit (or the separation threshold) of a biomarker or a combination of biomarkers for ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. An example of ROC curve and the area under the curve (AUC). The area under the ROC curve (AUC) [1] [2] is often used to summarize in a single number the diagnostic ability of the classifier. The AUC is simply ...
The 'worst-case' sensitivity or specificity must be calculated in order to avoid reliance on experiments with few results. For example, a particular test may easily show 100% sensitivity if tested against the gold standard four times, but a single additional test against the gold standard that gave a poor result would imply a sensitivity of ...
Youden's index is often used in conjunction with receiver operating characteristic (ROC) analysis. [4] The index is defined for all points of an ROC curve, and the maximum value of the index may be used as a criterion for selecting the optimum cut-off point when a diagnostic test gives a numeric rather than a dichotomous result.
The sensitivity index or discriminability index or detectability index is a dimensionless statistic used in signal detection theory. A higher index indicates that the signal can be more readily detected.
They use the sensitivity and specificity of the test to determine whether a test result usefully changes the probability that a condition (such as a disease state) exists. The first description of the use of likelihood ratios for decision rules was made at a symposium on information theory in 1954. [ 1 ]