Ad
related to: equivalent resistance practice problems with solutions answer
Search results
Results From The WOW.Com Content Network
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
One-element networks are trivial and two-element, [note 3] two-terminal networks are either two elements in series or two elements in parallel, also trivial. The smallest number of elements that is non-trivial is three, and there are two 2-element-kind non-trivial transformations possible, one being both the reverse transformation and the topological dual, of the other.
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
The conductivity of a water/aqueous solution is highly dependent on its concentration of dissolved salts, and other chemical species that ionize in the solution. Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher ...
In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection .
Randles circuit schematic. In electrochemistry, a Randles circuit is an equivalent electrical circuit that consists of an active electrolyte resistance R S in series with the parallel combination of the double-layer capacitance C dl and an impedance (Z w) of a faradaic reaction.
The solution principles outlined here also apply to phasor analysis of AC circuits. Two circuits are said to be equivalent with respect to a pair of terminals if the voltage across the terminals and current through the terminals for one network have the same relationship as the voltage and current at the terminals of the other network.
The metallic resistance are significant in some applications. F'rinstance, the metallic resistance of a coil is important to power supply design, the metallic resistance of a tantalum capacitor is important in certain amplifier designs, because it is actually used as a resistor in the frequency compensation to create a zero.