When.com Web Search

  1. Ads

    related to: trapezium angle facts worksheet 5th

Search results

  1. Results From The WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid: It has two adjacent angles that are supplementary, that is, they add up to 180 degrees. The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal.

  3. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...

  4. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  5. Trapezium - Wikipedia

    en.wikipedia.org/wiki/Trapezium

    Trapezium, plural trapezia, may refer to: Trapezium, in British and other forms of English, a trapezoid, a quadrilateral that has exactly one pair of parallel sides; Trapezium, in North American English, an irregular quadrilateral with no sides parallel; Trapezium (bone), a bone in the hand; Trapezium Cluster, a group of stars in the Orion Nebula

  6. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In spherical geometry, a spherical quadrilateral formed from four intersecting greater circles is cyclic if and only if the summations of the opposite angles are equal, i.e., α + γ = β + δ for consecutive angles α, β, γ, δ of the quadrilateral. [30] One direction of this theorem was proved by Anders Johan Lexell in 1782. [31]

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    The sum of the angles is the same for every triangle. There exists a pair of similar, but not congruent, triangles. Every triangle can be circumscribed. If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle.

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...