Search results
Results From The WOW.Com Content Network
The table below lists units supported by {{convert}}. More complete lists are linked for each dimension. For a complete list of all dimensions, see full list of units. {{Convert}} uses unit-codes, which are similar to, but not necessarily exactly the same as, the usual written abbreviation for a given unit. These unit-codes are displayed in ...
0.8–2 MPa 120–290 psi Pressure used in boilers of steam locomotives [citation needed] 1.1 MPa 162 psi Pressure of an average human bite [citation needed] 2.8–8.3 MPa 400–1,200 psi Pressure of carbon dioxide propellant in a paintball gun [64] 5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa ...
Toggle the table of contents. ... c ≡ 250.0 × 10 −6 m 3: ≡ 250. ... See Weight for detail of mass/weight distinction and conversion.
The conversion in SI units is 1 ksi = 6.895 MPa, or 1 MPa = 0.145 ksi. The megapound per square inch (Mpsi) is another multiple equal to a million psi. It is used in mechanics for the elastic modulus of materials, especially for metals. [5] The conversion in SI units is 1 Mpsi = 6.895 GPa, or 1 GPa = 0.145 Mpsi.
The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1] It is also equivalent to 10 barye (10 Ba) in the CGS system. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar , and the kilopascal (1 kPa = 1000 Pa), which is equal to ...
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
If HV is first expressed in N/mm 2 (MPa), or otherwise by converting from kgf/mm 2, then the tensile strength (in MPa) of the material can be approximated as σ u ≈ HV/ c, where c is a constant determined by yield strength, Poisson's ratio, work-hardening exponent and geometrical factors – usually ranging between 2 and 4. [9]
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., =).