When.com Web Search

  1. Ads

    related to: multiplicative group maths problems

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  3. List of problems in loop theory and quasigroup theory

    en.wikipedia.org/wiki/List_of_problems_in_loop...

    Construct a conjugacy closed loop whose left multiplication group is not isomorphic to its right multiplication group. Proposed: by Aleš Drápal at Loops '03, Prague 2003; Solved by: Aleš Drápal; Solution: There is such a loop of order 9. In can be obtained in the LOOPS package by the command CCLoop(9,1)

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates every pair of elements of the set to an element of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  6. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  7. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.