Ad
related to: multiplicative group maths calculator
Search results
Results From The WOW.Com Content Network
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
Let R + be the group of positive real numbers under multiplication. Then the direct product R + × R + is the group of all vectors in the first quadrant under the operation of component-wise multiplication (x 1, y 1) × (x 2, y 2) = (x 1 × x 2, y 1 × y 2). Let G and H be cyclic groups with two elements each:
For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1. An abstract group defined by this multiplication is often denoted C n, and we say that G is isomorphic to the standard cyclic group C n.
The order of that group is φ(n). Lagrange's theorem states that the order of any subgroup of a finite group divides the order of the entire group, in this case φ(n). If a is any number coprime to n then a is in one of these residue classes, and its powers a, a 2, ... , a k modulo n form a subgroup of the group of residue classes, with a k ≡ ...