Search results
Results From The WOW.Com Content Network
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
In mathematics, the falling factorial (sometimes called the descending factorial, [1] falling sequential product, or lower factorial) is defined as the polynomial ...
These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,
Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .
2.4 Modified-factorial denominators. 2.5 Binomial coefficients. 2.6 Harmonic numbers. 3 Binomial coefficients. 4 Trigonometric functions. 5 Rational functions. 6 ...
Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It appears as a factor in various probability-distribution functions and other formulas in the fields of probability , statistics , analytic number theory , and combinatorics .
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!