When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  4. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height (=).

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    For example, consider a tower 50 m south from your home, where the coordinate frame is centered at your home, such that east is in the direction of the x-axis and north is in the direction of the y-axis, then the coordinate vector to the base of the tower is r = (0 m, −50 m, 0 m).

  6. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    Exact motion planning for high-dimensional systems under complex constraints is computationally intractable. Potential-field algorithms are efficient, but fall prey to local minima (an exception is the harmonic potential fields). Sampling-based algorithms avoid the problem of local minima, and solve many problems quite quickly.

  7. External ballistics - Wikipedia

    en.wikipedia.org/wiki/External_ballistics

    The most detailed ballistic tables are developed for long range artillery and are based on six-degree-of-freedom trajectory analysis, which accounts for aerodynamic behavior along the three axial directions—elevation, range, and deflection—and the three rotational directions—pitch, yaw, and spin.

  8. Constant bearing, decreasing range - Wikipedia

    en.wikipedia.org/wiki/Constant_bearing...

    A ship seen to be on a constant bearing with decreasing range will collide with the observer's ship unless avoiding action is taken. Constant bearing, decreasing range ( CBDR ) is a term in navigation which means that some object, usually another ship viewed from the deck or bridge of one's own ship, is getting closer but maintaining the same ...

  9. Inverted pendulum - Wikipedia

    en.wikipedia.org/wiki/Inverted_pendulum

    The equations of motion can be derived using Lagrange's equations. We refer to the drawing to the right where () is the angle of the pendulum of length with respect to the vertical direction and the acting forces are gravity and an external force F in the x-direction.