Search results
Results From The WOW.Com Content Network
For example, a variable capacitor that could be varied over a 9:1 capacitance range will give an RC oscillator a 9:1 frequency range, but in an LC oscillator it will give only a 3:1 range. Some examples of common RC oscillator circuits are listed below: A phase-shift oscillator
A phase-shift oscillator is a linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output fed back to its input through a phase-shift network consisting of resistors and capacitors in a ladder network .
Relaxation oscillators are generally used to produce low frequency signals for such applications as blinking lights and electronic beepers. During the vacuum tube era they were used as oscillators in electronic organs and horizontal deflection circuits and time bases for CRT oscilloscopes; one of the most common was the Miller integrator circuit invented by Alan Blumlein, which used vacuum ...
Block diagram of a feedback oscillator circuit to which the Barkhausen criterion applies. It consists of an amplifying element A whose output v o is fed back into its input v f through a feedback network β(jω). To find the loop gain, the feedback loop is considered broken at some point and the output v o for a given input v i is calculated:
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.. An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, [1] [2] [3] powered by a direct current (DC) source.
The Leeson equation is presented in various forms. In the above equation, if f c is set to zero the equation represents a linear analysis of a feedback oscillator in the general case (and flicker noise is not included), it is for this that Leeson is most recognised, showing a −20 dB/decade of offset frequency slope. If used correctly, the ...
See Poincaré–Lindstedt method for a derivation to order 2. See chapter 10 of [14] for a derivation up to order 3, and [15] for a numerical derivation up to order 164. For large μ, the behavior of the oscillator has a slow buildup, fast release cycle (a cycle of building up the tension and releasing the tension, thus a relaxation oscillation).
The lattice phase equaliser, or filter, is a filter composed of lattice, or X-sections. With single element branches it can produce a phase shift up to 180°, and with resonant branches it can produce phase shifts up to 360°. The filter is an example of a constant-resistance network (i.e., its image impedance is constant over all frequencies).