When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Open-circuit time constant method - Wikipedia

    en.wikipedia.org/wiki/Open-circuit_time_constant...

    The linear term in jω in this transfer function can be derived by the following method, which is an application of the open-circuit time constant method to this example. Set the signal source to zero. Select capacitor C 2, replace it by a test voltage V X, and replace C 1 by an open circuit.

  3. General time- and transfer constant analysis - Wikipedia

    en.wikipedia.org/wiki/General_time-_and_transfer...

    Setting a capacitor value to zero corresponds to an open circuit, while a zero-valued inductor is a short circuit. So for calculation of the , all other capacitors are open-circuited and all other inductors are short-circuited. This is the essence of the ZVT method, which reduces to OCT when only capacitors are involved.

  4. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  5. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    For example, in charging such a capacitor the differential increase in voltage with charge is governed by: = where the voltage dependence of capacitance, C(V), suggests that the capacitance is a function of the electric field strength, which in a large area parallel plate device is given by ε = V/d.

  6. Mathematical methods in electronics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_methods_in...

    Differential Equations: Applied to model and analyze the behavior of circuits over time. Used in the study of filters, oscillators, and transient responses of circuits. Complex Numbers and Complex Analysis: Important for circuit analysis and impedance calculations. Used in signal processing and to solve problems involving sinusoidal signals.

  7. Mesh analysis - Wikipedia

    en.wikipedia.org/wiki/Mesh_analysis

    Figure 1: Essential meshes of the planar circuit labeled 1, 2, and 3. R 1, R 2, R 3, 1/sC, and sL represent the impedance of the resistors, capacitor, and inductor values in the s-domain. V s and I s are the values of the voltage source and current source, respectively. Mesh analysis (or the mesh current method) is a circuit analysis method for ...

  8. Transfer constant - Wikipedia

    en.wikipedia.org/wiki/Transfer_constant

    The transfer constants are calculated under similar zero- and infinite-value conditions of reactive elements used in the Cochran-Grabel (CG) method [2] to calculate time constants, but calculating the low-frequency transfer functions from a defined input source to the output terminal, instead of the resistance seen by the reactive elements.

  9. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    An example is the capacitance of a capacitor constructed of two parallel plates both of area separated by a distance . If d {\textstyle d} is sufficiently small with respect to the smallest chord of A {\textstyle A} , there holds, to a high level of accuracy: C = ε A d ; {\displaystyle \ C=\varepsilon {\frac {A}{d}};}