Search results
Results From The WOW.Com Content Network
Plot showing underdamped and overdamped responses of a series RLC circuit to a voltage input step of 1 V. The critical damping plot is the bold red curve. The plots are normalised for L = 1 , C = 1 and ω 0 = 1 .
An underdamped response is one that oscillates within a decaying envelope. The more underdamped the system, the more oscillations and longer it takes to reach steady-state. Here damping ratio is always less than one. Critically damped A critically damped response is the response that reaches the steady-state value the fastest without being ...
The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...
The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = () A general form is T s = − ln ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...
The boundary solution between an underdamped oscillator and an overdamped oscillator occurs at a particular value of the friction coefficient and is called critically damped. If an external time-dependent force is present, the harmonic oscillator is described as a driven oscillator .
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. [6]