When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  3. Kirchhoff–Love plate theory - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Love_plate_theory

    The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [ 1 ] using assumptions proposed by Kirchhoff .

  4. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [ 1 ]

  5. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. [1] The typical thickness to width ratio of a plate structure is less than 0.1.

  6. Reissner-Mindlin plate theory - Wikipedia

    en.wikipedia.org/wiki/Reissner-Mindlin_plate_theory

    The Mindlin hypothesis implies that the displacements in the plate have the form = (,) ; =, = (,)where and are the Cartesian coordinates on the mid-surface of the undeformed plate and is the coordinate for the thickness direction, , =, are the in-plane displacements of the mid-surface, is the displacement of the mid-surface in the direction, and designate the angles which the normal to the mid ...

  7. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Newton's second law states that the rate of change of momentum of a body is proportional to the resultant force acting on the body and is in the same direction. Mathematically, F=ma (force = mass x acceleration). Newton's third law states that all forces occur in pairs, and these two forces are equal in magnitude and opposite in direction.

  9. Vibration of plates - Wikipedia

    en.wikipedia.org/wiki/Vibration_of_plates

    Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.