Search results
Results From The WOW.Com Content Network
Chromium-51 is a synthetic radioactive isotope of chromium having a half-life of 27.7 days and decaying by electron capture with emission of gamma rays (0.32 MeV); it is used to label red blood cells for measurement of mass or volume, survival time, and sequestration studies, for the diagnosis of gastrointestinal bleeding, and to label platelets to study their survival.
The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
This page uses the meta infobox {{Infobox isotopes (meta)}} for the element isotopes infobox.. This infobox contains the table of § Main isotopes, and the § Standard atomic weight.
Pages in category "Isotopes of chromium" The following 33 pages are in this category, out of 33 total. ... Chromium-63; Chromium-64; Chromium-65; Chromium-66 ...
Examples include carbon-14, nitrogen-15, and oxygen-16 in the table above. Isobars are nuclides with the same number of nucleons (i.e. mass number) but different numbers of protons and neutrons. Isobars neighbor each other diagonally from lower-left to upper-right. Examples include carbon-14, nitrogen-14, and oxygen-14 in the table above.
All odd mass numbers have only one beta decay stable nuclide. Among even mass number, five (124, 130, 136, 150, 154) have three beta-stable nuclides. None have more than three; all others have either one or two. From 2 to 34, all have only one. From 36 to 72, only eight (36, 40, 46, 50, 54, 58, 64, 70) have two, and the remaining 11 have one.
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.