Search results
Results From The WOW.Com Content Network
In algebra, an absolute value (also called a valuation, magnitude, or norm, [1] although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain.
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
Let R be a Dedekind domain, K its field of fractions, and let P be a non-zero prime ideal of R. Then, the localization of R at P, denoted R P, is a principal ideal domain whose field of fractions is K. The construction of the previous section applied to the prime ideal PR P of R P yields the P-adic valuation of K.
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...
In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.
A subderivative value 0 occurs here because the absolute value function is at a minimum. The full family of valid subderivatives at zero constitutes the subdifferential interval [ − 1 , 1 ] {\displaystyle [-1,1]} , which might be thought of informally as "filling in" the graph of the sign function with a vertical line through the origin ...
In mathematics, an absolutely integrable function is a function whose absolute value is integrable, meaning that the integral of the absolute value over the whole domain is finite.