Search results
Results From The WOW.Com Content Network
C and C++ also support the pointer to void type (specified as void *), but this is an unrelated notion. Variables of this type are pointers to data of an unspecified type, so in this context (but not the others) void * acts roughly like a universal or top type.
C and C++ distinguish implementation-defined behavior from unspecified behavior. For implementation-defined behavior, the implementation must choose a particular behavior and document it. An example in C/C++ is the size of integer data types. The choice of behavior must be consistent with the documented behavior within a given execution of the ...
All logical operators exist in C and C++ and can be overloaded in C++, albeit the overloading of the logical AND and logical OR is discouraged, because as overloaded operators they behave as ordinary function calls, which means that both of their operands are evaluated, so they lose their well-used and expected short-circuit evaluation property ...
Since exceptions in C++ are supposed to be exceptional (i.e. uncommon/rare) events, the phrase "zero-cost exceptions" [note 2] is sometimes used to describe exception handling in C++. Like runtime type identification (RTTI), exceptions might not adhere to C++'s zero-overhead principle as implementing exception handling at run-time requires a ...
The most vexing parse is a counterintuitive form of syntactic ambiguity resolution in the C++ programming language. In certain situations, the C++ grammar cannot distinguish between the creation of an object parameter and specification of a function's type. In those situations, the compiler is required to interpret the line as a function type ...
In Objective-C, for example, both the generic Object and NSObject (in Cocoa/OpenStep) provide the method isMemberOfClass: which returns true if the argument to the method is an instance of the specified class. The method isKindOfClass: analogously returns true if the argument inherits from the specified class.
© 2025 Yahoo. All rights reserved.
Here, attempting to use a non-class type in a qualified name (T::foo) results in a deduction failure for f<int> because int has no nested type named foo, but the program is well-formed because a valid function remains in the set of candidate functions.