Ads
related to: volume between curves calculator math
Search results
Results From The WOW.Com Content Network
Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution.
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Simpson's rules are used to calculate the volume of lifeboats, [6] and by surveyors to calculate the volume of sludge in a ship's oil tanks. For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7]
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
In the case of a simple disc created by rotating a curve about the x-axis, the radius is given by f(x), and its height is the differential dx. Using an integral with bounds a and b, the volume of the disc is equal to: [51] ().
Given any curve c : (a, b) → S, one may consider the composition X ∘ c : (a, b) → ℝ 3. As a map between Euclidean spaces, it can be differentiated at any input value to get an element (X ∘ c)′(t) of ℝ 3. The orthogonal projection of this vector onto T c(t) S defines the covariant derivative ∇ c ′(t) X.
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = . using angular coordinates , [,), representing rotation around the tube and rotation around the torus' axis of revolution, respectively, where the major radius is the distance from the center of the tube to the center of ...
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...