When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The equilateral cylinder is characterized by being a right circular cylinder in which the diameter of the base is equal to the value of the height (geratrix). [ 4 ] Then, assuming that the radius of the base of an equilateral cylinder is r {\displaystyle r\,} then the diameter of the base of this cylinder is 2 r {\displaystyle 2r\,} and its ...

  3. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    For a given volume, the right circular cylinder with the smallest surface area has h = 2r. Equivalently, for a given surface area, the right circular cylinder with the largest volume has h = 2r, that is, the cylinder fits snugly in a cube of side length = altitude ( = diameter of base circle). [8]

  4. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

  5. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    Note that for the automotive/hotrod use-case the most convenient (used by enthusiasts) unit of length for the piston-rod-crank geometry is the inch, with typical dimensions being 6" (inch) rod length and 2" (inch) crank radius. This article uses units of inch (") for position, velocity and acceleration, as shown in the graphs above.

  6. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  7. Bore (engine) - Wikipedia

    en.wikipedia.org/wiki/Bore_(engine)

    In a piston engine, the bore (or cylinder bore) is the diameter of each cylinder. Engine displacement is calculated based on bore, stroke length and the number of cylinders: [ 1 ] displacement = π ( ⁠ 1 / 2 ⁠ × bore ) 2 × stroke × n cylinders

  8. Engine displacement - Wikipedia

    en.wikipedia.org/wiki/Engine_displacement

    Engine displacement is the measure of the cylinder volume swept by all of the pistons of a piston engine, excluding the combustion chambers. [1] It is commonly used as an expression of an engine's size, and by extension as an indicator of the power (through mean effective pressure and rotational speed ) an engine might be capable of producing ...

  9. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where