When.com Web Search

  1. Ads

    related to: examples of points and lines in math problems 6th

Search results

  1. Results From The WOW.Com Content Network
  2. Configuration (geometry) - Wikipedia

    en.wikipedia.org/wiki/Configuration_(geometry)

    Configurations (4 3 6 2) (a complete quadrangle, at left) and (6 2 4 3) (a complete quadrilateral, at right).. In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.

  3. Pappus configuration - Wikipedia

    en.wikipedia.org/wiki/Pappus_configuration

    The Pappus configuration, augmented with an additional line (the vertical one in the center of the figure), solves the orchard-planting problem.. A variant of the Pappus configuration provides a solution to the orchard-planting problem, the problem of finding sets of points that have the largest possible number of lines through three points.

  4. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In an axiomatic formulation of Euclidean geometry, such as that of Hilbert (modern mathematicians added to Euclid's original axioms to fill perceived logical gaps), [1]: 108 a line is stated to have certain properties that relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and ...

  5. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.

  6. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.

  7. Complete quadrangle - Wikipedia

    en.wikipedia.org/wiki/Complete_quadrangle

    A complete quadrangle (at left) and a complete quadrilateral (at right).. In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points.