Ads
related to: examples of points and lines in math problems with solutionssmartholidayshopping.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
Various published solutions break the implicit rules of the puzzle in order to achieve a solution with even fewer than four lines. For instance, if the dots are assumed to have some finite size, rather than to be infinitesimally-small mathematical grid points, then it is possible to connect them with only three slightly slanted lines.
A set of 20 points in a 10 × 10 grid, with no three points in a line. The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line. The problem concerns lines of all slopes, not only those aligned with the
The Pappus configuration, augmented with an additional line (the vertical one in the center of the figure), solves the orchard-planting problem.. A variant of the Pappus configuration provides a solution to the orchard-planting problem, the problem of finding sets of points that have the largest possible number of lines through three points.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
Remarkably, these six points lie on four lines, three points on each line; moreover, each line corresponds to the radical axis of a potential pair of solution circles. To show this, Gergonne considered lines through corresponding points of tangency on two of the given circles, e.g., the line defined by A 1 / A 2 and the line defined by B 1 / B 2 .
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.