Search results
Results From The WOW.Com Content Network
A moderate energy density would be 1.6 to 3 calories per gram (7–13 kJ/g); salmon, lean meat, and bread would fall in this category. Foods with high energy density have more than three calories per gram (>13 kJ/g) and include crackers, cheese, chocolate, nuts, [10] and fried foods like potato or tortilla chips.
Macronutrients are defined as a class of chemical compounds which humans consume in relatively large quantities compared to vitamins and minerals which provide humans with energy. Fat has a food energy content of 38 kilojoules per gram (9 kilocalories per gram) proteins and carbohydrates 17 kJ/g (4 kcal/g). [2]
TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion.The ton of TNT is a unit of energy defined by convention to be 4.184 gigajoules (1 gigacalorie), [1] which is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of TNT.
To facilitate evaluation by consumers, food energy values (and other nutritional properties) in package labels or tables are often quoted for convenient amounts of the food, rather than per gram or kilogram; such as in "calories per serving" or "kcal per 100 g", or "kJ per package". The units vary depending on country:
The unit is most commonly used to express food energy, namely the specific energy (energy per mass) of metabolizing different types of food. For example, fat (triglyceride lipids) contains 9 kilocalories per gram (kcal/g), while carbohydrates (sugar and starch) and protein contain approximately 4 kcal/g. [29] Alcohol in food contains 7 kcal/g. [30]
The electromagnetic radiation and kinetic energy (thermal and blast energy) released in this explosion carried the missing gram of mass. Whenever energy is added to a system, the system gains mass, as shown when the equation is rearranged: A spring's mass increases whenever it is put into compression or tension. Its mass increase arises from ...
The Atwater system, [1] named after Wilbur Olin Atwater, or derivatives of this system are used for the calculation of the available energy of foods.The system was developed largely from the experimental studies of Atwater and his colleagues in the later part of the 19th century and the early years of the 20th at Wesleyan University in Middletown, Connecticut.
Theoretical total mass–energy of 1 gram of matter (25 GW·h) [177] 10 14 1.8×10 14 J Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h) 3.75×10 14 J: Total energy released by the Chelyabinsk meteor. [178] 6×10 14 J: Energy released by an average hurricane per day [179] 10 15: peta-(PJ) > 10 15 J