Search results
Results From The WOW.Com Content Network
An example that reveals the interaction of the multiple negative and positive feedback loops is the activation of cyclin-dependent protein kinases, or Cdks14. Positive feedback loops play a role by switching cells from low to high Cdk-activity. The interaction between the two types of loops is evident in mitosis.
Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the magnitude of the perturbation. [ 1 ]
An example is a system in which a protein P that is a product of gene G "positively regulates its own production by binding to a regulatory element of the gene coding for it," [14] and the protein gets used or lost at a rate that increases as its concentration increases. This feedback loop creates two possible states "on" and "off".
In unicellular organisms such as bacteria, signaling can be used to 'activate' peers from a dormant state, enhance virulence, defend against bacteriophages, etc. [46] In quorum sensing, which is also found in social insects, the multiplicity of individual signals has the potentiality to create a positive feedback loop, generating coordinated ...
The Hodgkin cycle represents a positive feedback loop in which an initial membrane depolarization leads to uncontrolled deflection of the membrane potential to near V Na. The initial depolarization must reach or surpass a certain threshold in order to activate voltage-gated Na + channels .
An example of positive feedback mechanism in the insulin transduction pathway is the activation of some enzymes that inhibit other enzymes from slowing or stopping the insulin transduction pathway which results in improved intake of the glucose. One of these pathways, involves the PI3K enzyme.
Within molecular and cell biology, temporal feedback, also referred to as interlinked or interlocked feedback, is a biological regulatory motif in which fast and slow positive feedback loops are interlinked to create "all or none" switches. This interlinking produces separate, adjustable activation and de-activation times.
Bistability can be generated by a positive feedback loop with an ultrasensitive regulatory step. Positive feedback loops, such as the simple X activates Y and Y activates X motif, essentially link output signals to their input signals and have been noted to be an important regulatory motif in cellular signal transduction because positive ...