When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    An affine basis of a Euclidean space of dimension n is a set of n + 1 points that are not contained in a hyperplane. An affine basis define barycentric coordinates for every point. Many other coordinates systems can be defined on a Euclidean space E of dimension n, in the following way.

  3. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The natural topology of Euclidean space implies a topology for the Euclidean group E(n). Namely, a sequence f i of isometries of E n {\displaystyle \mathbb {E} ^{n}} ( i ∈ N {\displaystyle i\in \mathbb {N} } ) is defined to converge if and only if, for any point p of E n {\displaystyle \mathbb {E} ^{n}} , the sequence of points p i converges.

  4. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    A Euclidean model of a non-Euclidean geometry is a choice of some objects existing in Euclidean space and some relations between these objects that satisfy all axioms (and therefore, all theorems) of the non-Euclidean geometry. These Euclidean objects and relations "play" the non-Euclidean geometry like contemporary actors playing an ancient ...

  5. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers. In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R n or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  7. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    Euclidean space has parallel lines which extend infinitely while remaining equidistant. In non-Euclidean spaces, lines perpendicular to a traversal either converge or diverge. A two-dimensional space is a mathematical space with two dimensions , meaning points have two degrees of freedom : their locations can be locally described with two ...

  8. Space - Wikipedia

    en.wikipedia.org/wiki/Space

    In the 19th and 20th centuries mathematicians began to examine geometries that are non-Euclidean, in which space is conceived as curved, rather than flat, as in the Euclidean space. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space. [3]

  9. Euclidean topology - Wikipedia

    en.wikipedia.org/wiki/Euclidean_topology

    In any metric space, the open balls form a base for a topology on that space. [1] The Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} is the topology generated by these balls.