When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    Like all regular convex polytopes, the octahedron can be dissected into an integral number of disjoint orthoschemes, all of the same shape characteristic of the polytope. A polytope's characteristic orthoscheme is a fundamental property because the polytope is generated by reflections in the facets of its orthoscheme.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    1–18: 5 convex regular and 13 convex semiregular; 20–22, 41: 4 non-convex regular; 19–66: Special 48 stellations/compounds (Nonregulars not given on this list) 67–109: 43 non-convex non-snub uniform; 110–119: 10 non-convex snub uniform; Chi: the Euler characteristic, χ. Uniform tilings on the plane correspond to a torus topology ...

  4. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    Example forms from the cube and octahedron. The convex uniform polyhedra can be named by Wythoff construction operations on the regular form. In more detail the convex uniform polyhedron are given below by their Wythoff construction within each symmetry group. Within the Wythoff construction, there are repetitions created by lower symmetry forms.

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  6. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Every convex polyhedron is combinatorially equivalent to a canonical polyhedron, a polyhedron that has a midsphere whose center coincides with the centroid of the polyhedron. The shape of the canonical polyhedron (but not its scale or position) is uniquely determined by the combinatorial structure of the given polyhedron. [26]

  7. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

  8. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    The resulting shape is the intersection of all closed half-spaces that have the given ideal points as limit points. Alternatively, any Euclidean convex polyhedron that has a circumscribed sphere can be reinterpreted as an ideal polyhedron by interpreting the interior of the sphere as a Klein model for hyperbolic space. [1]

  9. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    There are only eight different convex deltahedra, one of which is the regular icosahedron. [4] The regular icosahedron can also be constructed starting from a regular octahedron. All triangular faces of a regular octahedron are breaking, twisting at a certain angle, and filling up with other equilateral triangles.