Ads
related to: radiation efficiency in an antenna
Search results
Results From The WOW.Com Content Network
In antenna theory, radiation efficiency is a measure of how well a radio antenna converts the radio-frequency power accepted at its terminals into radiated power. Likewise, in a receiving antenna it describes the proportion of the radio wave's power intercepted by the antenna which is actually delivered as an electrical signal.
In electromagnetics, an antenna's gain is a key performance parameter which combines the antenna's directivity and radiation efficiency. The term power gain has been deprecated by IEEE. [ 1 ] In a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction.
In order to give a meaningful value for the antenna efficiency, the radiation resistance and loss resistance must be referred to the same point on the antenna, often the input terminals. [17] [18] Radiation resistance is by convention calculated with respect to the maximum possible current on the antenna. [5]
In this case, rather than quoting the antenna gain, one would be more concerned with the directive gain, or simply directivity which does not include the effect of antenna (in)efficiency. The directive gain of an antenna can be computed from the published gain divided by the antenna's efficiency. In equation form, gain = directivity × efficiency.
A dummy load may have an SWR of 1:1 but an efficiency of 0, as it absorbs all the incident power, producing heat but radiating no RF energy; SWR is not a measure of an antenna's efficiency. Radiation resistance is the part of the resistance to current caused by
However, that radiation is unpolarized, whereas the antenna is only sensitive to one polarization, reducing it by a factor of 2. To find the total power from black-body radiation accepted by the antenna, we must integrate that quantity times the assumed cross-sectional area A eff of the antenna over all solid angles Ω and over all frequencies f:
Omnidirectional radiation patterns are produced by the simplest practical antennas, monopole and dipole antennas, consisting of one or two straight rod conductors on a common axis. Antenna gain (G) is defined as antenna efficiency (e) multiplied by antenna directivity (D) which is expressed mathematically as: =.
The two-wire version is often described as a "squashed loop antenna", since the total length of wire is one wavelength, and efficiency / radiation resistance of the folded dipole is very high: 4× that of a single dipole, [citation needed] analogous to the high efficiency of large loops. Any number of similar parallel wires may be added, with ...