Search results
Results From The WOW.Com Content Network
DNA ligase is able to form a phosphodiester bond between the nucleotides on each side of the gap. [2] Phosphodiesters are negatively charged at pH 7. [5] The negative charge attracts histones, metal cations such as magnesium, and polyamines [needs citation]. Repulsion between these negative charges influences the conformation of the polynucleic ...
The ester linkage is formed between the N-hydroxyphthalimide and a carboxylic acid by elimination of water, the coupling achieved with N,N′-dicyclohexylcarbodiimide (DCC). For peptide synthesis, the N-terminus of the growing peptide is protected with tert -butyloxycarbonyl while its C-terminus (Z–NH–CH(R)–COOH) is coupled to N ...
The amino acid is coupled to the terminal nucleotide at the 3’-end of the tRNA (the A in the sequence CCA) via an ester bond. The formation of the ester bond conserves a considerable part of the energy from the activation reaction. This stored energy provides the majority of the energy needed for peptide bond formation during translation.
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
This linkage is an ester bond that chemically binds the carboxyl group of an amino acid to the terminal 3'-OH group of its cognate tRNA. [7] It has been discovered that the amino acid moiety of a given aa-tRNA provides for its structural integrity; the tRNA moiety dictates, for the most part, how and when the amino acid will be incorporated ...
Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials, and often have a pleasant characteristic, fruity odor. This leads to their extensive use in the fragrance and flavor industry.
Alabama has been given a great gift, the chance to see what the college football world is like without it. What the Tide decides to do with that gift will shape the SEC and college football for ...
The Claisen condensation is a carbon–carbon bond forming reaction that occurs between two esters or one ester and another carbonyl compound in the presence of a strong base. The reaction produces a β-keto ester or a β-diketone. [1] It is named after Rainer Ludwig Claisen, who first published his work on the reaction in 1887.