Search results
Results From The WOW.Com Content Network
Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
The energy function in the action principles is not the total energy (conserved in an isolated system), but the Lagrangian, the difference between kinetic and potential energy. The kinetic energy combines the energy of motion for all the objects in the system; the potential energy depends upon the instantaneous position of the objects and ...
First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time ; Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions ...
In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques. [ 1 ] [ 2 ] [ 3 ] Since the mid-20th century, the term " dynamics " (or " analytical dynamics ") has largely superseded "kinetics" in physics textbooks, [ 4 ...
Reaction dynamics is a field within physical chemistry, studying why chemical reactions occur, how to predict their behavior, and how to control them. It is closely related to chemical kinetics , but is concerned with individual chemical events on atomic length scales and over very brief time periods. [ 1 ]
If the kinetic energy is a homogeneous function of degree 2 of the generalized velocities, and the Lagrangian is explicitly time-independent, then: ((˙), (˙ ˙),) = ((˙), ˙ ˙,), (, ˙), where λ is a constant, then the Hamiltonian will be the total conserved energy, equal to the total kinetic and potential energies of the system: = + =.
In thermodynamic integration, the free energy difference is calculated by defining a thermodynamic path between the states and integrating over ensemble-averaged enthalpy changes along the path. Such paths can either be real chemical processes or alchemical processes. An example alchemical process is the Kirkwood's coupling parameter method. [1]