When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chirp compression - Wikipedia

    en.wikipedia.org/wiki/Chirp_compression

    The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.

  3. Pulse compression - Wikipedia

    en.wikipedia.org/wiki/Pulse_compression

    Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.

  4. Chirp - Wikipedia

    en.wikipedia.org/wiki/Chirp

    Chirp compression - Further information on compression techniques; Chirp spread spectrum - A part of the wireless telecommunications standard IEEE 802.15.4a CSS; Chirped mirror; Chirped pulse amplification; Chirplet transform - A signal representation based on a family of localized chirp functions. Continuous-wave radar; Dispersion (optics ...

  5. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    The Fresnel ripples on a chirp spectrum are very obtrusive, especially when time-bandwidth products are low (under 50, say) and their presence leads to high time sidelobe levels when chirps are subject to pulse compression as in radar and sonar systems. They arise because of the sudden discontinuities in the chirp waveform at the commencement ...

  6. Continuous-wave radar - Wikipedia

    en.wikipedia.org/wiki/Continuous-wave_radar

    Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...

  7. Radar engineering - Wikipedia

    en.wikipedia.org/wiki/Radar_engineering

    Pulse-Doppler radar sensors are therefore more suited for long-range detection, while FMCW radar sensors are more suited for short-range detection. Monopulse : A monopulse feed network, as shown in Fig. 2, increases the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a single radiated pulse and which ...

  8. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    The pulse width must be long enough to ensure that the radar emits sufficient energy so that the reflected pulse is detectable by its receiver. The amount of energy that can be delivered to a distant target is the product of two things; the peak output power of the transmitter, and the duration of the transmission.

  9. ASR-11 - Wikipedia

    en.wikipedia.org/wiki/ASR-11

    The first advantage the ASR-11 offers is the use of a low peak-power, solid state transmitter with pulse compression technology, replacing the ASR-9's high peak-power, short pulse power system. This gives the radar the ability to provide the same amount of energy to a target at long range while making the radar less sensitive at shorter ranges.