Ad
related to: what factors drive ocean currents near
Search results
Results From The WOW.Com Content Network
Ocean surface currents Distinctive white lines trace the flow of surface currents around the world. Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level Animation of circulation around ice shelves of Antarctica
Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. [1] [2] The adjective thermohaline derives from thermo-referring to temperature and -haline referring to salt content, factors which together determine the density of sea water.
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
Those currents comprise half of the global thermohaline circulation that includes the flow of major ocean currents, the other half being the Southern Ocean overturning circulation. [ 2 ] The AMOC is composed of a northward flow of warm, more saline water in the Atlantic's upper layers and a southward, return flow of cold, salty, deep water.
A vital system of Atlantic Ocean currents that influences weather across the world could collapse as soon as the late 2030s, scientists have suggested in a new study — a planetary-scale disaster ...
Flotsam can be blown by the wind, or follow the flow of ocean currents, often ending up in the middle of oceanic gyres where currents are weakest. Within garbage patches, the waste is not compact, and although most of it is near the surface of the ocean, it can be found up to more than 30 metres (100 ft) deep in the water. [69]
A system of ocean currents that transports heat northward across the North Atlantic could collapse by mid-century, according to a new study, and scientists have said before that such a collapse ...
Thermohaline forcing refers to density-gradient driven motions, whereby density is determined by the temperature (‘thermo’) and salt concentration (‘haline’) of the water. Heat and freshwater fluxes at the ocean's surface play therefore a key role in forming ocean currents. Those currents exert a major effect on regional and global climate.