When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    The lambda calculus provides simple semantics for computation which are useful for formally studying properties of computation. The lambda calculus incorporates two simplifications that make its semantics simple. The first simplification is that the lambda calculus treats functions "anonymously;" it does not give them explicit names.

  3. Free variables and bound variables - Wikipedia

    en.wikipedia.org/wiki/Free_variables_and_bound...

    In the lambda calculus, x is a bound variable in the term M = λx. T and a free variable in the term T. We say x is bound in M and free in T. If T contains a subterm λx. U then x is rebound in this term. This nested, inner binding of x is said to "shadow" the outer binding. Occurrences of x in U are free occurrences of the new x. [3]

  4. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  5. Interaction nets - Wikipedia

    en.wikipedia.org/wiki/Interaction_nets

    The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction [2] and optimal, in Lévy's sense, Lambdascope. [3]

  6. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    In computer science, lambda calculi are said to have explicit substitutions if they pay special attention to the formalization of the process of substitution.This is in contrast to the standard lambda calculus where substitutions are performed by beta reductions in an implicit manner which is not expressed within the calculus; the "freshness" conditions in such implicit calculi are a notorious ...

  7. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  8. System F - Wikipedia

    en.wikipedia.org/wiki/System_F

    System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML

  9. Category:Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Category:Lambda_calculus

    Pages in category "Lambda calculus" The following 48 pages are in this category, out of 48 total. This list may not reflect recent changes. ...