Search results
Results From The WOW.Com Content Network
Harish Chandra Verma (born 3 April 1952), popularly known as HCV, is an Indian experimental physicist, author and emeritus professor of the Indian Institute of Technology Kanpur. In 2021, he was awarded the Padma Shri , the fourth highest civilian award, by the Government of India for his contribution to Physics Education. [ 1 ]
Harish-Chandra Mehrotra was born in Kanpur. [7] He was educated at B.N.S.D. College, Kanpur and at the University of Allahabad. [8] After receiving his master's degree in physics in 1940, he moved to the Indian Institute of Science, Bangalore for further studies under Homi J. Bhabha.
The definition of the Schwartz space uses Harish-Chandra's Ξ function and his σ function. The σ function is defined by = ‖ ‖for x=k exp X with k in K and X in p for a Cartan decomposition G = K exp p of the Lie group G, where ||X|| is a K-invariant Euclidean norm on p, usually chosen to be the Killing form.
Harish-Chandra (1978, 1999) proved a similar theorem for semisimple p-adic groups. Harish-Chandra (1955, 1956) had previously shown that any invariant eigendistribution is analytic on the regular elements of the group, by showing that on these elements it is a solution of an elliptic differential equation. The problem is that it may have ...
is called the character (or global character or Harish-Chandra character) of the representation. The character Θ π is a distribution on G that is invariant under conjugation, and is an eigendistribution of the center of the universal enveloping algebra of G , in other words an invariant eigendistribution, with eigenvalue the infinitesimal ...
Harish Chandra or Harish-Chandra may refer to: Harishchandra, a legendary Indian king mentioned in ancient texts; Harish-Chandra Indian American mathematician and physicist (1923–1983) Harish-Chandra Research Institute; Harish-Chandra's c-function; Harish-Chandra's regularity theorem; Harish-Chandra isomorphism; Harish C. Mehta Indian ...
In mathematics, Harish-Chandra's class is a class of Lie groups used in representation theory. Harish-Chandra's class contains all semisimple connected linear Lie groups and is closed under natural operations, most importantly, the passage to Levi subgroups. This closure property is crucial for many inductive arguments in representation theory ...
In the Class 7 textbook topic titled “Our Pasts-2”, pages 48 and 49 have been excluded. These pages mentioned “Mughal Emperors: Major campaigns and events.” The deletions also affected Biology and Chemistry textbooks as the theory of evolution and the periodic table were also purged from class 10 NCERT textbooks. [35] [36]