When.com Web Search

  1. Ad

    related to: 3rd order acoustic crossover linear system in c

Search results

  1. Results From The WOW.Com Content Network
  2. Audio crossover - Wikipedia

    en.wikipedia.org/wiki/Audio_crossover

    A third- or fourth-order acoustic crossover often has just a second-order electrical filter. This requires that speaker drivers be well behaved a considerable way from the nominal crossover frequency, and further that the high-frequency driver be able to survive a considerable input in a frequency range below its crossover point.

  3. Midwoofer-tweeter-midwoofer - Wikipedia

    en.wikipedia.org/wiki/Midwoofer-tweeter-midwoofer

    The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]

  4. Linkwitz–Riley filter - Wikipedia

    en.wikipedia.org/wiki/Linkwitz–Riley_filter

    This is the biggest advantage of L-R crossovers compared to even-order Butterworth crossovers, whose summed output has a +3 dB peak around the crossover frequency. Since cascading two n th -order Butterworth filters will give a (2 n ) th -order Linkwitz–Riley filter, theoretically any (2 n ) th -order Linkwitz–Riley crossover can be designed.

  5. Loudspeaker time alignment - Wikipedia

    en.wikipedia.org/wiki/Loudspeaker_time_alignment

    In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.

  6. Intermodulation - Wikipedia

    en.wikipedia.org/wiki/Intermodulation

    The output power of the two carriers (M1 and M2) increases by about 1 dB in each frame, while the 3rd order intermodulation products (D3 and D4) grow by 3 dB in each frame. Higher-order intermodulation products (5th order, 7th order, 9th order) are visible at very high input power levels as the amplifier is driven past saturation.

  7. Bessel filter - Wikipedia

    en.wikipedia.org/wiki/Bessel_filter

    In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat group delay (i.e., maximally linear phase response), which preserves the wave shape of filtered signals in the passband. [1] Bessel filters are often used in audio crossover systems.

  8. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  9. Transmission line loudspeaker - Wikipedia

    en.wikipedia.org/wiki/Transmission_line_loudspeaker

    The concept was innovated within acoustic enclosure design, and originally termed an "acoustical labyrinth", by acoustic engineer and later Director of Research, Benjamin Olney, who developed the concept at the Stromberg-Carlson Telephone Co. in the early 1930s while studying the effect of enclosure shape and size on speaker output, including ...