Search results
Results From The WOW.Com Content Network
The voltage standing wave ratio (VSWR) at a port, represented by the lower case 's', is a similar measure of port match to return loss but is a scalar linear quantity, the ratio of the standing wave maximum voltage to the standing wave minimum voltage.
The loss resistance will generally affect the feedpoint impedance, adding to its resistive component. That resistance will consist of the sum of the radiation resistance R rad and the loss resistance R loss. If a current I is delivered to the terminals of an antenna, then a power of I 2 R rad will be radiated and a power of I 2 R loss will
For example, the SWR bandwidth is typically determined by measuring the frequency range where the SWR is less than 2:1 . Another frequently used value for determining bandwidth for resonant antennas is the −3 dB return loss value, since loss due to SWR is −10·log 10 (2÷1) = −3.01000 dB.
German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna.
The insertion loss is not such a problem for an unequal split of power: for instance -40 dB at port 3 has an insertion loss less than 0.2 dB at port 2. Isolation can be improved at the expense of insertion loss at both output ports by replacing the output resistors with T pads. The isolation improvement is greater than the insertion loss added ...
The process capability index, or process capability ratio, is a statistical measure of process capability: the ability of an engineering process to produce an output within specification limits. [1] The concept of process capability only holds meaning for processes that are in a state of statistical control. This means it cannot account for ...
The concepts of signal-to-noise ratio and dynamic range are closely related. Dynamic range measures the ratio between the strongest un-distorted signal on a channel and the minimum discernible signal, which for most purposes is the noise level. SNR measures the ratio between an arbitrary signal level (not necessarily the most powerful signal ...
Mark-space ratio, or mark-to-space ratio, is another term for the same concept, to describe the temporal relationship between two alternating periods of a waveform. However, whereas the duty cycle relates the duration of one period to the duration of the entire cycle, the mark-space ratio relates the durations of the two individual periods: [ 13 ]