When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    A variational autoencoder is a generative model with a prior and noise distribution respectively. Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA , (spike & slab) sparse coding).

  3. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  4. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The idea is essentially the same as vector quantized variational autoencoder (VQVAE) plus generative adversarial network (GAN). After such a ViT-VQGAN is trained, it can be used to code an arbitrary image into a list of symbols, and code an arbitrary list of symbols into an image.

  5. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    Stable Diffusion consists of 3 parts: the variational autoencoder (VAE), U-Net, and an optional text encoder. [17] The VAE encoder compresses the image from pixel space to a smaller dimensional latent space , capturing a more fundamental semantic meaning of the image. [ 16 ]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    This is a problem in the calculus of variations, thus it is called the variational method. Since there are not many explicitly parametrized distribution families (all the classical distribution families, such as the normal distribution, the Gumbel distribution, etc, are far too simplistic to model the true distribution), we consider implicitly ...

  8. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    Because free energy can be expressed as the expected energy of observations under the variational density minus its entropy, it is also related to the maximum entropy principle. [19] Finally, because the time average of energy is action, the principle of minimum variational free energy is a principle of least action. Active inference allowing ...

  9. Total variation denoising - Wikipedia

    en.wikipedia.org/wiki/Total_variation_denoising

    The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.