Ads
related to: how to calculate machine productivity definition chemistry
Search results
Results From The WOW.Com Content Network
Atom economy. Atom economy (atom efficiency/percentage) is the conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced. The simplest definition was introduced by Barry Trost in 1991 and is equal to the ratio between the mass of desired product to the total mass of reactants, expressed as a percentage.
In chemistry, yield, also known as reaction yield or chemical yield, refers to the amount of product obtained in a chemical reaction. [1] Yield is one of the primary factors that scientists must consider in organic and inorganic chemical synthesis processes. [2] In chemical reaction engineering, "yield", "conversion" and "selectivity" are terms ...
Green chemistry metrics describe aspects of a chemical process relating to the principles of green chemistry. The metrics serve to quantify the efficiency or environmental performance of chemical processes, and allow changes in performance to be measured. The motivation for using metrics is the expectation that quantifying technical and ...
Conversion (chemistry) Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering. They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and ...
The Erlenmeyer receptacles are on the floor. Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential absorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to ...
The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction. 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2. where C 6 H 12 O 6 is glucose (which is subsequently transformed into other sugars ...
Flow chemistry is a well-established technique for use at a large scale when manufacturing large quantities of a given material. However, the term has only been coined recently for its application on a laboratory scale by chemists and describes small pilot plants, and lab-scale continuous plants. [1] Often, microreactors are used.
In this process, hydrogen is produced from a chemical reaction between steam and methane, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. [4] When carbon capture and storage is used to remove a large fraction of these emissions, the product is known as blue hydrogen.