When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    Advanced. Specialized. Miscellanea. v. t. e. Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.

  3. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The mass of any of the discs is the mass of the sphere multiplied by the ratio of the volume of an infinitely thin disc divided by the volume of a sphere (with constant radius ). The volume of an infinitely thin disc is π R 2 d x {\displaystyle \pi R^{2}\,dx} , or π ( a 2 − x 2 ) d x {\textstyle \pi \left(a^{2}-x^{2}\right)dx} .

  4. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    Spherical shell. spherical shell, right: two halves. In geometry, a spherical shell is a generalization of an annulus to three dimensions. It is the region of a ball between two concentric spheres of differing radii. [1]

  5. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    In the 3rd century BC, Archimedes, using a method resembling Cavalieri's principle, [5] was able to find the volume of a sphere given the volumes of a cone and cylinder in his work The Method of Mechanical Theorems. In the 5th century AD, Zu Chongzhi and his son Zu Gengzhi established a similar method to find a sphere's volume. [2]

  6. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula. where V, E, and F are respectively the numbers of v ertices (corners), e dges and f aces in the given polyhedron. Any convex polyhedron 's surface has Euler characteristic. This equation, stated by Euler in 1758, [2] is known as Euler's ...

  7. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.

  8. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    Intersection of a sphere and cone emanating from its center. A spherical sector (blue) A spherical sector. In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the ...

  9. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    List of moments of inertia. Moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ( [mass] × [length] 2).