When.com Web Search

  1. Ad

    related to: wavelength is equal to energy graph answer calculator excel

Search results

  1. Results From The WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    To calculate the energy in the box in this way, we need to evaluate how many photon states there are in a given energy range. If we write the total number of single photon states with energies between ε and ε + dε as g ( ε ) dε , where g ( ε ) is the density of states (which is evaluated below), then the total energy is given by

  5. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  6. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  7. Wavenumber–frequency diagram - Wikipedia

    en.wikipedia.org/wiki/Wavenumber–frequency_diagram

    In the geosciences, especially seismic data analysis, these plots also called f–k plot, in which energy density within a given time interval is contoured on a frequency-versus-wavenumber basis. They are used to examine the direction and apparent velocity of seismic waves and in velocity filter design.

  8. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    When used with a spectroscopic reflectometry tool, the Forouhi–Bloomer dispersion equations specify n and k for amorphous and crystalline materials as a function of photon energy E. Values of n and k as a function of photon energy, E , are referred to as the spectra of n and k , which can also be expressed as functions of the wavelength of ...

  9. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Log–log graphs of peak emission wavelength and radiant exitance vs. black-body temperature. Red arrows show that 5780 K black bodies have 501 nm peak and 63.3 MW/m 2 radiant exitance. With his law, Stefan also determined the temperature of the Sun 's surface. [ 23 ]