Ad
related to: 2 factor graph theory
Search results
Results From The WOW.Com Content Network
In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .
1-factorization of the Desargues graph: each color class is a 1-factor. The Petersen graph can be partitioned into a 1-factor (red) and a 2-factor (blue). However, the graph is not 1-factorable. In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G.
A factor graph is a bipartite graph representing the factorization ... "Factor Graphs and the Sum-Product Algorithm", IEEE Transactions on Information Theory, 47 (2): ...
In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...
In graph theory, two of Petersen's most famous contributions are: the Petersen graph, exhibited in 1898, served as a counterexample to Tait's ‘theorem’ on the 4-colour problem: a bridgeless 3-regular graph is factorable into three 1-factors and the theorem: ‘a connected 3-regular graph with at most two leaves contains a 1-factor’.
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem.
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem. 2.
A factor-critical graph is a graph with an odd number of vertices, such that for each vertex v, if v is removed from the graph then the remaining vertices have a perfect matching. László Lovász found that: A graph G is factor-critical if and only if G has an odd ear decomposition.