When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Earth tide - Wikipedia

    en.wikipedia.org/wiki/Earth_tide

    In coastal areas, because the ocean tide is quite out of step with the Earth tide, at high ocean tide there is an excess of water above what would be the gravitational equilibrium level, and therefore the adjacent ground falls in response to the resulting differences in weight. At low tide there is a deficit of water and the ground rises.

  3. Tide - Wikipedia

    en.wikipedia.org/wiki/Tide

    When Venus is closest to Earth, its effect is 0.000113 times the solar effect. [50] At other times, Jupiter or Mars may have the most effect. The lunar gravity residual field at the Earth's surface is known as the tide-generating force. This is the primary mechanism that drives tidal action and explains two simultaneous tidal bulges; Earth's ...

  4. Tidal force - Wikipedia

    en.wikipedia.org/wiki/Tidal_force

    For example, the lunar tidal acceleration at the Earth's surface along the Moon–Earth axis is about 1.1 × 10 −7 g, while the solar tidal acceleration at the Earth's surface along the Sun–Earth axis is about 0.52 × 10 −7 g, where g is the gravitational acceleration at the Earth's surface. Hence the tide-raising force (acceleration) due ...

  5. Tidal range - Wikipedia

    en.wikipedia.org/wiki/Tidal_range

    Tidal range is the difference in height between high tide and low tide. Tides are the rise and fall of sea levels caused by gravitational forces exerted by the Moon and Sun, by Earth's rotation and by centrifugal force caused by Earth's progression around the Earth-Moon barycenter. Tidal range depends on time and location.

  6. Tidal heating - Wikipedia

    en.wikipedia.org/wiki/Tidal_heating

    Munk & Wunsch (1998) estimated that Earth experiences 3.7 TW (0.0073 W/m 2) of tidal heating, of which 95% (3.5 TW or 0.0069 W/m 2) is associated with ocean tides and 5% (0.2 TW or 0.0004 W/m 2) is associated with Earth tides, with 3.2 TW being due to tidal interactions with the Moon and 0.5 TW being due to tidal interactions with the Sun. [3] Egbert & Ray (2001) confirmed that overall ...

  7. Theory of tides - Wikipedia

    en.wikipedia.org/wiki/Theory_of_tides

    High and low tide in the Bay of Fundy. The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).

  8. Atmospheric tide - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_tide

    As the migrating tides stay fixed relative to the Sun a pattern of excitation is formed that is also fixed relative to the Sun. Changes in the tide observed from a stationary viewpoint on the Earth's surface are caused by the rotation of the Earth with respect to this fixed pattern. Seasonal variations of the tides also occur as the Earth tilts ...

  9. Tidal acceleration - Wikipedia

    en.wikipedia.org/wiki/Tidal_acceleration

    The net tide raised on Earth by the Moon is dragged ahead of the Moon by Earth's much faster rotation. Tidal friction is required to drag and maintain the bulge ahead of the Moon, and it dissipates the excess energy of the exchange of rotational and orbital energy between Earth and the Moon as heat.