Search results
Results From The WOW.Com Content Network
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
This is the modus ponens rule of propositional logic. Rules of inference are often formulated as schemata employing metavariables. [2] In the rule (schema) above, the metavariables A and B can be instantiated to any element of the universe (or sometimes, by convention, a restricted subset such as propositions) to form an infinite set of ...
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
Deductively valid arguments follow a rule of inference. [38] A rule of inference is a scheme of drawing conclusions that depends only on the logical form of the premises and the conclusion but not on their specific content. [39] [40] The most-discussed rule of inference is the modus ponens. It has the following form: p; if p then q; therefore q.
The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions.Assume is a set of formulas, a formula, and () has been derived. The generalization rule states that () can be derived if is not mentioned in and does not occur in .
Constructive dilemma [1] [2] [3] is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too.
For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the (complement of the) Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more ...
In predicate logic, universal instantiation [1] [2] [3] (UI; also called universal specification or universal elimination, [citation needed] and sometimes confused with dictum de omni) [citation needed] is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class.