Search results
Results From The WOW.Com Content Network
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Tomographic reconstruction: Projection, Back projection and Filtered back projection. Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon.
In practice, there are a wide rarity of methods that are utilized, most of which are reconstruct 3-D information (volume) from 2-D signals (image). Typically used methods are CT, MRI, PET and SPECT. And the filtered back projection based on the principles introduced above are commonly applied. [4] [5] Computed tomography of human brain - large
For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step. [ 1 ]
Rear projection (background projection, process photography, etc.) is one of many in-camera effects cinematic techniques in film production for combining foreground performances with pre-filmed backgrounds. It was widely used for many years in driving scenes, or to show other forms of "distant" background motion.
Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...
The projected normal distribution is a circular distribution representing the direction of a random variable with multivariate normal distribution, obtained by radial projection of the variable over the unit (n-1)-sphere. Due to this, and unlike other commonly used circular distributions, it is not symmetric nor unimodal.
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century. Statistical graphics developed through attention to four problems: [3]