Search results
Results From The WOW.Com Content Network
In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "
In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.
Parametrization, also spelled parameterization, parametrisation or parameterisation, is the process of defining or choosing parameters. Parametrization may refer more specifically to: Parametrization (geometry), the process of finding parametric equations of a curve, surface, etc. Parametrization by arc length, a natural parametrization of a curve
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.
The arc length of the curve is the same regardless of the parameterization used to define the curve: = ... then it is simply a special case of a parametric ...
A Bézier curve (/ ˈ b ɛ z. i. eɪ / BEH-zee-ay, [1] French pronunciation:) is a parametric curve used in computer graphics and related fields. [2] A set of discrete "control points" defines a smooth, continuous curve by means of a formula.
In calculus, integration by parametric derivatives, also called parametric integration, [1] is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution .