Search results
Results From The WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
Here L is the orbital angular momentum, n, ℓ, and m are the principal, azimuthal, and magnetic quantum numbers respectively. The z component of the orbital magnetic dipole moment for an electron with a magnetic quantum number m ℓ is given by =.
where N is the Avogadro constant, g is the Landé g-factor, and μ B is the Bohr magneton. In this treatment it has been assumed that the electronic ground state is not degenerate, that the magnetic susceptibility is due only to electron spin and that only the ground state is thermally populated.
The toroidal ring model, known originally as the Parson magneton or magnetic electron, is a physical model of subatomic particles. It is also known as the plasmoid ring , vortex ring , or helicon ring .
The 12-volt car battery is the most recycled product in the world, according to the United States Environmental Protection Agency. In the U.S. alone, about 100 million auto batteries a year are replaced, and 99 percent of them are turned in for recycling. [36] However, the recycling may be done incorrectly in unregulated environments.
The Zeeman effect (/ ˈ z eɪ m ə n / ZAY-mən, Dutch:) is the splitting of a spectral line into several components in the presence of a static magnetic field. It is caused by interaction of the magnetic field with the magnetic moment of the atomic electron associated to its orbital motion and spin ; this interaction shifts some orbital ...
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.