When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape. There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:

  4. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  5. 50 Times Random Things Just Fit Perfectly Together And It Was ...

    www.aol.com/100-times-random-things-just...

    We’ve gathered some amusing and oddly satisfying examples of things that perfectly fit into other things. If that sounds like it can’t be all that enjoyable, just wait, get comfortable as you ...

  6. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.

  7. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.

  8. How to talk about CV gaps with an employer - AOL

    www.aol.com/news/how-to-talk-about-cv-gaps-with...

    When putting together your CV, try not to worry too much about any gaps. Instead, think about all the reasons you are suitable for the role in questions and communicate these as best you can.

  9. Discrete geometry - Wikipedia

    en.wikipedia.org/wiki/Discrete_geometry

    Polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century.Early topics studied were: the density of circle packings by Thue, projective configurations by Reye and Steinitz, the geometry of numbers by Minkowski, and map colourings by Tait, Heawood, and Hadwiger.