When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    Big O notation is a convenient way to express the worst-case scenario for a given algorithm, although it can also be used to express the average-case — for example, the worst-case scenario for quicksort is O(n 2), but the average-case run-time is O(n log n).

  3. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.

  4. Disjoint-set data structure - Wikipedia

    en.wikipedia.org/wiki/Disjoint-set_data_structure

    The precise analysis of the performance of a disjoint-set forest is somewhat intricate. However, there is a much simpler analysis that proves that the amortized time for any m Find or Union operations on a disjoint-set forest containing n objects is O(m log * n), where log * denotes the iterated logarithm. [12] [13] [14] [15]

  5. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    For typical serial sorting algorithms, good behavior is O(n log n), with parallel sort in O(log 2 n), and bad behavior is O(n 2). Ideal behavior for a serial sort is O(n), but this is not possible in the average case. Optimal parallel sorting is O(log n). Swaps for "in-place" algorithms. Memory usage (and use of other computer resources).

  6. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  7. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.

  8. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    For example, O(2 log 2 n) is not the same as O(2 ln n) because the former is equal to O(n) and the latter to O(n 0.6931...). Algorithms with running time O(n log n) are sometimes called linearithmic. [37] Some examples of algorithms with running time O(log n) or O(n log n) are: Average time quicksort and other comparison sort algorithms [38]

  9. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The first such distribution found is π(N) ~ ⁠ N / log(N) ⁠, where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N).