When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constraint (computational chemistry) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(computational...

    Hybrid methods have also been introduced in which the constraints are divided into two groups; the constraints of the first group are solved using internal coordinates whereas those of the second group are solved using constraint forces, e.g., by a Lagrange multiplier or projection method.

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  4. Dirac bracket - Wikipedia

    en.wikipedia.org/wiki/Dirac_bracket

    More abstractly, the two-form implied from the Dirac bracket is the restriction of the symplectic form to the constraint surface in phase space. [ 3 ] This article assumes familiarity with the standard Lagrangian and Hamiltonian formalisms, and their connection to canonical quantization .

  5. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    The equality constraint functions :, =, …,, are affine transformations, that is, of the form: () =, where is a vector and is a scalar. The feasible set C {\displaystyle C} of the optimization problem consists of all points x ∈ D {\displaystyle \mathbf {x} \in {\mathcal {D}}} satisfying the inequality and the equality constraints.

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.

  8. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    This solution gives the primal variables as functions of the Lagrange multipliers, which are called dual variables, so that the new problem is to maximize the objective function with respect to the dual variables under the derived constraints on the dual variables (including at least the nonnegativity constraints). In general given two dual ...

  9. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.